Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(3): e0294323, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38329329

RESUMO

Teleost gill mucus has a highly diverse microbiota, which plays an essential role in the host's fitness and is greatly influenced by the environment. Arctic char (Salvelinus alpinus), a salmonid well adapted to northern conditions, faces multiple stressors in the Arctic, including water chemistry modifications, that could negatively impact the gill microbiota dynamics related to the host's health. In the context of increasing environmental disturbances, we aimed to characterize the taxonomic distribution of transcriptionally active taxa within the bacterial gill microbiota of Arctic char in the Canadian Arctic in order to identify active bacterial composition that correlates with environmental factors. For this purpose, a total of 140 adult anadromous individuals were collected from rivers, lakes, and bays belonging to five Inuit communities located in four distinct hydrologic basins in the Canadian Arctic (Nunavut and Nunavik) during spring (May) and autumn (August). Various environmental factors were collected, including latitudes, water and air temperatures, oxygen concentration, pH, dissolved organic carbon (DOC), salinity, and chlorophyll-a concentration. The taxonomic distribution of transcriptionally active taxa within the gill microbiota was quantified by 16S rRNA gene transcripts sequencing. The results showed differential bacterial activity between the different geographical locations, explained by latitude, salinity, and, to a lesser extent, air temperature. Network analysis allowed the detection of a potential dysbiosis signature (i.e., bacterial imbalance) in fish gill microbiota from Duquet Lake in the Hudson Strait and the system Five Mile Inlet connected to the Hudson Bay, both showing the lowest alpha diversity and connectivity between taxa.IMPORTANCEThis paper aims to decipher the complex relationship between Arctic char (Salvelinus alpinus) and its symbiotic microbial consortium in gills. This salmonid is widespread in the Canadian Arctic and is the main protein and polyunsaturated fatty acids source for Inuit people. The influence of environmental parameters on gill microbiota in wild populations remains poorly understood. However, assessing the Arctic char's active gill bacterial community is essential to look for potential pathogens or dysbiosis that could threaten wild populations. Here, we concluded that Arctic char gill microbiota was mainly influenced by latitude and air temperature, the latter being correlated with water temperature. In addition, a dysbiosis signature detected in gill microbiota was potentially associated with poor fish health status recorded in these disturbed environments. With those results, we hypothesized that rapid climate change and increasing anthropic activities in the Arctic might profoundly disturb Arctic char gill microbiota, affecting their survival.


Assuntos
Lagos , Microbiota , Animais , Baías , Canadá , Disbiose , Brânquias , RNA Ribossômico 16S/genética , Truta/genética , Truta/metabolismo , Água/metabolismo
2.
Glob Chang Biol ; 30(2): e17193, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380447

RESUMO

The Arctic is the fastest warming biome on the planet, and environmental changes are having striking effects on freshwater ecosystems that may impact the regional carbon cycle. The metabolic state of Arctic lakes is often considered net heterotrophic, due to an assumed supply of allochthonous organic matter that supports ecosystem respiration and carbon mineralization in excess of rates of primary production. However, lake metabolic patterns vary according to regional climatic characteristics, hydrological connectivity, organic matter sources and intrinsic lake properties, and the metabolism of most Arctic lakes is unknown. We sampled 35 waterbodies along a connectivity gradient from headwater to downstream lakes, on southern Victoria Island, Nunavut, in an area characterized by low precipitation, organic-poor soils, and high evaporation rates. We evaluated whether lakes were net autotrophic or heterotrophic during the open water period using an oxygen isotopic mass balance approach. Most of the waterbodies were autotrophic and sites of net organic matter production or close to metabolic equilibrium. Autotrophy was associated with higher benthic primary production, as compared to its pelagic counterpart, due to the high irradiance reaching the bottom and efficient internal carbon and nutrient cycling. Highly connected midstream and downstream lakes showed efficient organic matter cycling, as evidenced by the strong coupling between gross primary production (GPP) and ecosystem respiration, while decoupling was observed in some headwater lakes with significantly higher GPP. The shallow nature of lakes in the flat, arid region of southern Victoria Island supports net autotrophy in most lakes during the open water season. Ongoing climate changes that lengthen the ice-free irradiance period and increase rates of nutrient evapoconcentration may further promote net autotrophy, with uncertain long-term effects for lake functioning.


Assuntos
Ecossistema , Lagos , Nunavut , Canadá , Processos Autotróficos , Ciclo do Carbono , Carbono/metabolismo , Água
3.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34810251

RESUMO

Global climate warming is causing the loss of freshwater ice around the Northern Hemisphere. Although the timing and duration of ice covers are known to regulate ecological processes in seasonally ice-covered ecosystems, the consequences of shortening winters for freshwater biota are poorly understood owing to the scarcity of under-ice research. Here, we present one of the first in-lake experiments to postpone ice-cover onset (by ≤21 d), thereby extending light availability (by ≤40 d) in early winter, and explicitly demonstrate cascading effects on pelagic food web processes and phenologies. Delaying ice-on elicited a sequence of events from winter to spring: 1) relatively greater densities of algal resources and primary consumers in early winter; 2) an enhanced prevalence of winter-active (overwintering) consumers throughout the ice-covered period, associated with augmented storage of high-quality fats likely due to a longer access to algal resources in early winter; and 3) an altered trophic structure after ice-off, with greater initial springtime densities of overwintering consumers driving stronger, earlier top-down regulation, effectively reducing the spring algal bloom. Increasingly later ice onset may thus promote consumer overwintering, which can confer a competitive advantage on taxa capable of surviving winters upon ice-off; a process that may diminish spring food availability for other consumers, potentially disrupting trophic linkages and energy flow pathways over the subsequent open-water season. In considering a future with warmer winters, these results provide empirical evidence that may help anticipate phenological responses to freshwater ice loss and, more broadly, constitute a case of climate-induced cross-seasonal cascade on realized food web processes.


Assuntos
Cadeia Alimentar , Gelo , Plâncton/fisiologia , Estações do Ano , Animais , Biomarcadores , Clima , Mudança Climática , Ecossistema , Eutrofização , Água Doce , Camada de Gelo , Lagos , Modelos Lineares , Fotossíntese , Fitoplâncton , Quebeque , Fatores de Tempo , Zooplâncton
4.
Glob Chang Biol ; 27(22): 5889-5906, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34462999

RESUMO

Climate change-driven permafrost thaw has a strong influence on pan-Arctic regions, via, for example, the formation of thermokarst ponds. These ponds are hotspots of microbial carbon cycling and greenhouse gas production, and efforts have been put on disentangling the role of bacteria and archaea in recycling the increasing amounts of carbon arriving to the ponds from degrading watersheds. However, despite the well-established role of fungi in carbon cycling in the terrestrial environments, the interactions between permafrost thaw and fungal communities in Arctic freshwaters have remained unknown. We integrated data from 60 ponds in Arctic hydro-ecosystems, representing a gradient of permafrost integrity and spanning over five regions, namely Alaska, Greenland, Canada, Sweden, and Western Siberia. The results revealed that differences in pH and organic matter quality and availability were linked to distinct fungal community compositions and that a large fraction of the community represented unknown fungal phyla. Results display a 16%-19% decrease in fungal diversity, assessed by beta diversity, across ponds in landscapes with more degraded permafrost. At the same time, sites with similar carbon quality shared more species, aligning a shift in species composition with the quality and availability of terrestrial dissolved organic matter. We demonstrate that the degradation of permafrost has a strong negative impact on aquatic fungal diversity, likely via interactions with the carbon pool released from ancient deposits. This is expected to have implications for carbon cycling and climate feedback loops in the rapidly warming Arctic.


Assuntos
Pergelissolo , Regiões Árticas , Ecossistema , Fungos , Lagoas
5.
Sci Rep ; 11(1): 2868, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536480

RESUMO

Ice cover persists throughout summer over many lakes at extreme polar latitudes but is likely to become increasingly rare with ongoing climate change. Here we addressed the question of how summer ice-cover affects the underlying water column of Ward Hunt Lake, a freshwater lake in the Canadian High Arctic, with attention to its vertical gradients in limnological properties that would be disrupted by ice loss. Profiling in the deepest part of the lake under thick mid-summer ice revealed a high degree of vertical structure, with gradients in temperature, conductivity and dissolved gases. Dissolved oxygen, nitrous oxide, carbon dioxide and methane rose with depth to concentrations well above air-equilibrium, with oxygen values at > 150% saturation in a mid-water column layer of potential convective mixing. Fatty acid signatures of the seston also varied with depth. Benthic microbial mats were the dominant phototrophs, growing under a dim green light regime controlled by the ice cover, water itself and weakly colored dissolved organic matter that was mostly autochthonous in origin. In this and other polar lakes, future loss of mid-summer ice will completely change many water column properties and benthic light conditions, resulting in a markedly different ecosystem regime.

6.
Front Microbiol ; 12: 786094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35222298

RESUMO

Across much of the Arctic, lakes and ponds dominate the landscape. Starting in late September, the lakes are covered in ice, with ice persisting well into June or early July. In summer, the lakes are highly productive, supporting waterfowl and fish populations. However, little is known about the diversity and ecology of microscopic life in the lakes that influence biogeochemical cycles and contribute to ecosystem services. Even less is known about the prevalence of species that are characteristic of the seasons or whether some species persist year-round under both ice cover and summer open-water conditions. To begin to address these knowledge gaps, we sampled 10 morphometrically diverse lakes in the region of Ekaluktutiak (Cambridge Bay), on southern Victoria Island (NU, Canada). We focused on Greiner Lake, the lakes connected to it, isolated ponds, and two nearby larger lakes outside the Greiner watershed. The largest lakes sampled were Tahiryuaq (Ferguson Lake) and the nearby Spawning Lake, which support commercial sea-run Arctic char (Salvelinus alpinus) fisheries. Samples for nucleic acids were collected from the lakes along with limnological metadata. Microbial eukaryotes were identified with high-throughput amplicon sequencing targeting the V4 region of the 18S rRNA gene. Ciliates, dinoflagellates, chrysophytes, and cryptophytes dominated the lake assemblages. A Bray-Curtis dissimilarity matrix separated communities into under-ice and open-water clusters, with additional separation by superficial lake area. In all, 133 operational taxonomic units (OTUs) occurred either in all under-ice or all open-water samples and were considered "core" microbial species or ecotypes. These were further characterized as seasonal indicators. Ten of the OTUs were characteristic of all lakes and all seasons sampled. Eight of these were cryptophytes, suggesting diverse functional capacity within the lineage. The core open-water indicators were mostly chrysophytes, with a few ciliates and uncharacterized Cercozoa, suggesting that summer communities are mixotrophic with contributions by heterotrophic taxa. The core under-ice indicators included a dozen ciliates along with chrysophytes, cryptomonads, and dinoflagellates, indicating a more heterotrophic community augmented by mixotrophic taxa in winter.

7.
J Photochem Photobiol B ; 209: 111932, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32652465

RESUMO

Solar ultraviolet radiation (UV) induces photodegradation of optically and functionally important organic compounds in lakes and may negatively impact aquatic biota. We disentangled UV impacts on dissolved organic matter (DOM) transformation, and algal and zoobenthic micro-organisms in two shallow subarctic lakes in NW Finnish Lapland; in a high-UV + low-DOM (tundra, Iso-Jehkas) and a low-UV + high-DOM (mountain birch woodland, Mukkavaara) system. In addition to site and seasonal comparisons, in situ experiments with three treatments (DARK, photosynthetically active radiation [PAR], UV + PAR) were set up floating on the lakes for four weeks during midsummer. Lake water and experimental lake water were analyzed for basic limnology, optical properties (dissolved organic carbon [DOC], specific UV absorbance [SUVA], colored DOM [CDOM], and DOM compounds) as well as for photosynthetic and photoprotective pigments in algae and microzoobenthos. DOC concentrations remained largely unchanged after the exposure period in seasonal and experimental samples in both lakes yet the biochemical composition of the carbon pools was distinctly altered. CDOM and SUVA decreased seasonally and under UV exposure in the experiments, and terrestrial DOM compounds decreased in the experiments, suggesting UV induced photodegradation of large molecular size DOM of terrestrial origin. Higher seasonal and experimental (UV + PAR vs. PAR) proportional CDOM degradation occurred in Iso-Jehkas (32%, 29%) than in Mukkavaara (19%, 9%). Accordingly, the high-UV + low-DOM lake was more sensitive to photodegradation despite originally low CDOM relative to the low-UV + high-DOM system where DOM biodegradation likely prevailed. Experimental results showed elevated algal carotenoid/chlorophyll ratios and microzoobenthic melanin under UV exposure indicating photoinhibition and photoprotective pigmentation. UV has a significant impact on aquatic food webs of subarctic lakes altering the biogeochemical composition of organic matter and organisms through mechanisms of photodegradation, photoinhibition and photoprotection.


Assuntos
Lagos/química , Raios Ultravioleta , Regiões Árticas , Monitoramento Ambiental , Fotólise
8.
Ecology ; 101(6): e03013, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32068250

RESUMO

Increased incorporation of terrestrial organic matter (t-OM) into consumer biomass (allochthony) is believed to reduce growth capacity. In this study, we examined the relationship between crustacean zooplankton allochthony and production in a boreal lake that displays strong seasonal variability in t-OM inputs. Contrary to our hypotheses, we found no effect of allochthony on production at the community and the species levels. The high-frequency seasonal sampling (time-for-space) allowed for estimating the efficiency of zooplankton in converting this external carbon source to growth. From the daily t-OM inputs in the lake (57-3,027 kg C/d), the zooplankton community transferred 0.2% into biomass (0.01-2.36 kg C/d); this level was of the same magnitude as the carbon transfer efficiency for algal-derived carbon (0.4%). In the context of the boundless carbon cycle, which integrates inland waters as a biologically active component of the terrestrial landscape, the use of the time-for-space approach for the quantifying of t-OM trophic transfer efficiency by zooplankton is a critical step toward a better understanding of the effects of increasing external carbon fluxes on pelagic food webs.


Assuntos
Lagos , Zooplâncton , Animais , Carbono , Crustáceos , Cadeia Alimentar
9.
Environ Microbiol ; 20(7): 2568-2584, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29921005

RESUMO

Northern lakes are ice-covered for a large part of the year, yet our understanding of microbial diversity and activity during winter lags behind that of the ice-free period. In this study, we investigated under-ice diversity and metabolism of Verrucomicrobia in seasonally ice-covered lakes in temperate and boreal regions of Quebec, Canada using 16S rRNA sequencing, metagenomics and metatranscriptomics. Verrucomicrobia, particularly the V1, V3 and V4 subdivisions, were abundant during ice-covered periods. A diversity of Verrucomicrobia genomes were reconstructed from Quebec lake metagenomes. Several genomes were associated with the ice-covered period and were represented in winter metatranscriptomes, supporting the notion that Verrucomicrobia are metabolically active under ice. Verrucomicrobia transcriptome analysis revealed a range of metabolisms potentially occurring under ice, including carbohydrate degradation, glycolate utilization, scavenging of chlorophyll degradation products, and urea use. Genes for aerobic sulfur and hydrogen oxidation were expressed, suggesting chemolithotrophy may be an adaptation to conditions where labile carbon may be limited. The expression of genes for flagella biosynthesis and chemotaxis was detected, suggesting Verrucomicrobia may be actively sensing and responding to winter nutrient pulses, such as phytoplankton blooms. These results increase our understanding on the diversity and metabolic processes occurring under ice in northern lakes ecosystems.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


Assuntos
Variação Genética , Camada de Gelo/microbiologia , Lagos/microbiologia , Metagenoma , Verrucomicrobia/genética , Canadá , Ecossistema , Genoma Bacteriano , Fitoplâncton , RNA Ribossômico 16S , Estações do Ano , Microbiologia da Água
10.
Ecology ; 99(3): 752-754, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29265347
11.
Sci Rep ; 7(1): 11543, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912552

RESUMO

Shortening winter ice-cover duration in lakes highlights an urgent need for research focused on under-ice ecosystem dynamics and their contributions to whole-ecosystem processes. Low temperature, reduced light and consequent changes in autotrophic and heterotrophic resources alter the diet for long-lived consumers, with consequences on their metabolism in winter. We show in a survival experiment that the copepod Leptodiaptomus minutus in a boreal lake does not survive five months under the ice without food. We then report seasonal changes in phytoplankton, terrestrial and bacterial fatty acid (FA) biomarkers in seston and in four zooplankton species for an entire year. Phytoplankton FA were highly available in seston (2.6 µg L-1) throughout the first month under the ice. Copepods accumulated them in high quantities (44.8 µg mg dry weight-1), building lipid reserves that comprised up to 76% of body mass. Terrestrial and bacterial FA were accumulated only in low quantities (<2.5 µg mg dry weight-1). The results highlight the importance of algal FA reserve accumulation for winter survival as a key ecological process in the annual life cycle of the freshwater plankton community with likely consequences to the overall annual production of aquatic FA for higher trophic levels and ultimately for human consumption.


Assuntos
Copépodes/fisiologia , Água Doce/parasitologia , Metabolismo dos Lipídeos , Fitoplâncton/química , Animais , Estações do Ano , Análise de Sobrevida
12.
ISME J ; 11(8): 1938-1941, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28430187

RESUMO

In the transition zone of the shifting permafrost border, thaw ponds emerge as hotspots of microbial activity, processing the ancient carbon freed from the permafrost. We analyzed the microbial succession across a gradient of recently emerged to older ponds using three molecular markers: one universal, one bacterial and one fungal. Age was a major modulator of the microbial community of the thaw ponds. Surprisingly, typical freshwater taxa comprised only a small fraction of the community. Instead, thaw ponds of all age classes were dominated by enigmatic bacterial and fungal phyla. Our results on permafrost thaw ponds lead to a revised perception of the thaw pond ecosystem and their microbes, with potential implications for carbon and nutrient cycling in this increasingly important class of freshwaters.


Assuntos
Bactérias/genética , Fungos/genética , Microbiota , Pergelissolo/microbiologia , Lagoas/microbiologia , Biomarcadores Ambientais , Fatores de Tempo , Microbiologia da Água
13.
Lipids ; 52(1): 83-91, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27981494

RESUMO

Diapause, which occurs through the production of dormant eggs, is a strategy used by some zooplankton to avoid winter months of persistent low temperatures and low food availability. However, reports of active zooplankton under the ice indicate that other strategies also exist. This study was aimed at evaluating whether the composition of storage lipids in the fall differs between diapausing and active overwintering Daphnia. We assessed the quantity of storage lipids and fatty acid (FA) composition of Daphnia species, along with FA content of seston, in six boreal, alpine and subarctic lakes at the onset of winter, and evaluated the association between storage lipids and Daphnia overwintering strategy. We found that active overwintering Daphnia had >55% body fat and the highest FA concentrations. Polyunsaturated FA, especially stearidonic acid (18:4n-3; SDA) and high ratios of n-3:n-6, were preferentially retained to a greater extent in active overwintering Daphnia than in those that entered diapause. Daphnia FA composition was independent of that of the seston diet, indicating that Daphnia adjusted their storage lipids according to the physiological requirements of a given overwintering strategy. The occurrence of an active overwintering strategy has consequences for zooplankton community structure, and can have important implications for the transfer of high-quality energy at higher trophic levels.


Assuntos
Daphnia/fisiologia , Ácidos Graxos/análise , Zooplâncton/fisiologia , Tecido Adiposo/química , Animais , Daphnia/química , Comportamento Alimentar , Estações do Ano , Zooplâncton/química
14.
Ecol Lett ; 20(1): 98-111, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889953

RESUMO

Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experience periods of snow and ice cover. Relatively little is known of winter ecology in these systems, due to a historical research focus on summer 'growing seasons'. We executed the first global quantitative synthesis on under-ice lake ecology, including 36 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal differences and connections as well as how seasonal differences vary with geophysical factors. Plankton were more abundant under ice than expected; mean winter values were 43.2% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume and 25.3% of summer zooplankton density. Dissolved nitrogen concentrations were typically higher during winter, and these differences were exaggerated in smaller lakes. Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), with higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, phytoplankton and zooplankton community composition showed few systematic differences between seasons, although literature suggests that seasonal differences are frequently lake-specific, species-specific, or occur at the level of functional group. Within the subset of lakes that had longer time series, winter influenced the subsequent summer for some nutrient variables and zooplankton biomass.


Assuntos
Ecossistema , Camada de Gelo , Lagos , Plâncton/fisiologia , Estações do Ano
15.
Sci Rep ; 6: 34456, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27686416

RESUMO

In the subarctic region, climate warming and permafrost thaw are leading to emergence of ponds and to an increase in mobility of catchment carbon. As carbon of terrestrial origin is increasing in subarctic freshwaters the resource pool supporting their microbial communities and metabolism is changing, with consequences to overall aquatic productivity. By sampling different subarctic water bodies for a one complete year we show how terrestrial and algal carbon compounds vary in a range of freshwaters and how differential organic carbon quality is linked to bacterial metabolism and community composition. We show that terrestrial drainage and associated nutrients supported higher bacterial growth in ponds and river mouths that were influenced by fresh terrestrial carbon than in large lakes with carbon from algal production. Bacterial diversity, however, was lower at sites influenced by terrestrial carbon inputs. Bacterial community composition was highly variable among different water bodies and especially influenced by concentrations of dissolved organic carbon (DOC), fulvic acids, proteins and nutrients. Furthermore, a distinct preference was found for terrestrial vs. algal carbon among certain bacterial tribes. The results highlight the contribution of the numerous ponds to cycling of terrestrial carbon in the changing subarctic and arctic regions.

16.
PLoS One ; 10(5): e0126231, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25970289

RESUMO

Climate change is proceeding rapidly at high northern latitudes and may have a variety of direct and indirect effects on aquatic food webs. One predicted effect is the potential shift in phytoplankton community structure towards increased cyanobacterial abundance. Given that cyanobacteria are known to be a nutritionally poor food source, we hypothesized that such a shift would reduce the efficiency of feeding and growth of northern zooplankton. To test this hypothesis, we first isolated a clone of Daphnia pulex from a permafrost thaw pond in subarctic Québec, and confirmed that it was triploid but otherwise genetically similar to a diploid, reference clone of the same species isolated from a freshwater pond in southern Québec. We used a controlled flow-through system to investigate the direct effect of temperature and indirect effect of subarctic picocyanobacteria (Synechococcus) on threshold food concentrations and growth rate of the high latitude clone. We also compared the direct effect of temperature on both Daphnia clones feeding on eukaryotic picoplankton (Nannochloropsis). The high latitude clone had a significantly lower food threshold for growth than the temperate clone at both 18 and 26°C, implying adaptation to lower food availability even under warmer conditions. Polyunsaturated fatty acids were present in the picoeukaryote but not the cyanobacterium, confirming the large difference in food quality. The food threshold for growth of the high latitude Daphnia was 3.7 (18°C) to 4.2 (26°C) times higher when fed Synechococcus versus Nannochloropsis, and there was also a significant negative effect of increased temperature and cyanobacterial food on zooplankton fatty acid content and composition. The combined effect of temperature and food quality on the performance of the high latitude Daphnia was greater than their effects added separately, further indicating the potentially strong indirect effects of climate warming on aquatic food web processes.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Daphnia/fisiologia , Fitoplâncton/fisiologia , Synechococcus/fisiologia , Zooplâncton/fisiologia , Animais , Clima , Mudança Climática , Cadeia Alimentar , Água Doce , Fitoplâncton/química , Quebeque , Synechococcus/química , Temperatura , Zooplâncton/química
17.
Photochem Photobiol Sci ; 14(1): 108-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25388554

RESUMO

Interactions between climate change and UV radiation are having strong effects on aquatic ecosystems due to feedback between temperature, UV radiation, and greenhouse gas concentration. Higher air temperatures and incoming solar radiation are increasing the surface water temperatures of lakes and oceans, with many large lakes warming at twice the rate of regional air temperatures. Warmer oceans are changing habitats and the species composition of many marine ecosystems. For some, such as corals, the temperatures may become too high. Temperature differences between surface and deep waters are becoming greater. This increase in thermal stratification makes the surface layers shallower and leads to stronger barriers to upward mixing of nutrients necessary for photosynthesis. This also results in exposure to higher levels of UV radiation of surface-dwelling organisms. In polar and alpine regions decreases in the duration and amount of snow and ice cover on lakes and oceans are also increasing exposure to UV radiation. In contrast, in lakes and coastal oceans the concentration and colour of UV-absorbing dissolved organic matter (DOM) from terrestrial ecosystems is increasing with greater runoff from higher precipitation and more frequent extreme storms. DOM thus creates a refuge from UV radiation that can enable UV-sensitive species to become established. At the same time, decreased UV radiation in such surface waters reduces the capacity of solar UV radiation to inactivate viruses and other pathogens and parasites, and increases the difficulty and price of purifying drinking water for municipal supplies. Solar UV radiation breaks down the DOM, making it more available for microbial processing, resulting in the release of greenhouse gases into the atmosphere. In addition to screening solar irradiance, DOM, when sunlit in surface water, can lead to the formation of reactive oxygen species (ROS). Increases in carbon dioxide are in turn acidifying the oceans and inhibiting the ability of many marine organisms to form UV-absorbing exoskeletons. Many aquatic organisms use adaptive strategies to mitigate the effects of solar UV-B radiation (280-315 nm), including vertical migration, crust formation, synthesis of UV-absorbing substances, and enzymatic and non-enzymatic quenching of ROS. Whether or not genetic adaptation to changes in the abiotic factors plays a role in mitigating stress and damage has not been determined. This assessment addresses how our knowledge of the interactive effects of UV radiation and climate change factors on aquatic ecosystems has advanced in the past four years.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Raios Ultravioleta , Animais , Organismos Aquáticos/efeitos dos fármacos , Peixes/fisiologia , Mamíferos/fisiologia , Espécies Reativas de Oxigênio/metabolismo
18.
Freshw Rev ; 3(2): 105-131, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21516254

RESUMO

While many laboratory and field studies show that zooplankton are negatively affected when exposed to high intensities of ultraviolet radiation (UVR), most studies also indicate that zooplankton are well adapted to cope with large variations in their UVR exposure in the pelagic zone of lakes. The response mechanisms of zooplankton are diverse and efficient and may explain the success and richness of freshwater zooplankton in optically variable waters. While no single behavioural or physiological protection mechanism seems to be superior, and while several unexplained and contradictory patterns exist in zooplankton UVR ecology, recent increases in our understanding are consistent with UVR playing an important role for zooplankton. This review examines the variability in freshwater zooplankton responses to UVR, with a focus on crustacean zooplankton (Cladocera and Copepoda). We present an overview of UVR-induced damages, and the protection and recovery mechanisms freshwater zooplankton use when exposed to UVR. We review the current knowledge of UVR impact on freshwater zooplankton at species and community levels, and discuss briefly how global change over the last three decades has influenced the UVR milieu in lakes.

19.
Proc Natl Acad Sci U S A ; 102(12): 4397-402, 2005 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-15738395

RESUMO

Fifty-five paleolimnological records from lakes in the circumpolar Arctic reveal widespread species changes and ecological reorganizations in algae and invertebrate communities since approximately anno Domini 1850. The remoteness of these sites, coupled with the ecological characteristics of taxa involved, indicate that changes are primarily driven by climate warming through lengthening of the summer growing season and related limnological changes. The widespread distribution and similar character of these changes indicate that the opportunity to study arctic ecosystems unaffected by human influences may have disappeared.


Assuntos
Clima Frio , Ecossistema , Efeito Estufa , Animais , Regiões Árticas , Biodiversidade , Eucariotos/isolamento & purificação , Água Doce , Invertebrados , Fatores de Tempo , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...